Study reveals how an anesthesia drug induces unconsciousness (2024)

There are many drugs that anesthesiologists can use to induce unconsciousness in patients. Exactly how these drugs cause the brain to lose consciousness has been a longstanding question, but MIT neuroscientists have now answered that question for one commonly used anesthesia drug.

Using a novel technique for analyzing neuron activity, the researchers discovered that the drug propofol induces unconsciousness by disrupting the brain’s normal balance between stability and excitability. The drug causes brain activity to become increasingly unstable, until the brain loses consciousness.

“The brain has to operate on this knife’s edge between excitability and chaos. It’s got to be excitable enough for its neurons to influence one another, but if it gets too excitable, it spins off into chaos. Propofol seems to disrupt the mechanisms that keep the brain in that narrow operating range,” says Earl K. Miller, the Picower Professor of Neuroscience and a member of MIT’s Picower Institute for Learning and Memory.

The new findings, reported today in Neuron, could help researchers develop better tools for monitoring patients as they undergo general anesthesia.

Miller and Ila Fiete, a professor of brain and cognitive sciences, the director of the K. Lisa Yang Integrative Computational Neuroscience Center (ICoN), and a member of MIT’s McGovern Institute for Brain Research, are the senior authors of the new study. MIT graduate student Adam Eisen and MIT postdoc Leo Kozachkov are the lead authors of the paper.

Losing consciousness

Propofol is a drug that binds to GABA receptors in the brain, inhibiting neurons that have those receptors. Other anesthesia drugs act on different types of receptors, and the mechanism for how all of these drugs produce unconsciousness is not fully understood.

Miller, Fiete, and their students hypothesized that propofol, and possibly other anesthesia drugs, interfere with a brain state known as “dynamic stability.” In this state, neurons have enough excitability to respond to new input, but the brain is able to quickly regain control and prevent them from becoming overly excited.

Previous studies of how anesthesia drugs affect this balance have found conflicting results: Some suggested that during anesthesia, the brain shifts toward becoming too stable and unresponsive, which leads to loss of consciousness. Others found that the brain becomes too excitable, leading to a chaotic state that results in unconsciousness.

Part of the reason for these conflicting results is that it has been difficult to accurately measure dynamic stability in the brain. Measuring dynamic stability as consciousness is lost would help researchers determine ifunconsciousness results from too much stability or too little stability.

In this study, the researchers analyzed electrical recordings made in the brains of animals that received propofol over an hour-long period, during which they gradually lost consciousness. The recordings were made in four areas of the brain that are involved in vision, sound processing, spatial awareness, and executive function.

These recordings covered only a tiny fraction of the brain’s overall activity, so to overcome that, the researchers used a technique called delay embedding. This technique allows researchers to characterize dynamical systems from limited measurements by augmenting each measurement with measurements that were recorded previously.

Using this method, the researchers were able to quantify how the brain responds to sensory inputs, such as sounds, or to spontaneous perturbations of neural activity.

In the normal, awake state, neural activity spikes after any input, then returns to its baseline activity level. However, once propofol dosing began, the brain started taking longer to return to its baseline after these inputs, remaining in an overly excited state. This effect became more and more pronounced until the animals lost consciousness.

This suggests that propofol’s inhibition of neuron activity leads to escalating instability, which causes the brain to lose consciousness, the researchers say.

Better anesthesia control

To see if they could replicate this effect in a computational model, the researchers created a simple neural network. When they increased the inhibition of certain nodes in the network, as propofol does in the brain, network activity became destabilized, similar to the unstable activity the researchers saw in the brains of animals that received propofol.

“We looked at a simple circuit model of interconnected neurons, and when we turned up inhibition in that, we saw a destabilization. So, one of the things we’re suggesting is that an increase in inhibition can generate instability, and that is subsequently tied to loss of consciousness,” Eisen says.

As Fiete explains, “This paradoxical effect, in which boosting inhibition destabilizes the network rather than silencing or stabilizing it, occurs because of disinhibition. When propofol boosts the inhibitory drive, this drive inhibits other inhibitory neurons, and the result is an overall increase in brain activity.”

The researchers suspect that other anesthetic drugs, which act on different types of neurons and receptors, may converge on the same effect through different mechanisms — a possibility that they are now exploring.

If this turns out to be true, it could be helpful to the researchers’ ongoing efforts to develop ways to more precisely control the level of anesthesia that a patient is experiencing. These systems, which Miller is working on with Emery Brown, the Edward Hood Taplin Professor of Medical Engineering at MIT, work by measuring the brain’s dynamics and then adjusting drug dosages accordingly, in real-time.

“If you find common mechanisms at work across different anesthetics, you can make them all safer by tweaking a few knobs, instead of having to develop safety protocols for all the different anesthetics one at a time,” Miller says. “You don’t want a different system for every anesthetic they’re going to use in the operating room. You want one that’ll do it all.”

The researchers also plan to apply their technique for measuring dynamic stability to other brain states, including neuropsychiatric disorders.

“This method is pretty powerful, and I think it’s going to be very exciting to apply it to different brain states, different types of anesthetics, and also other neuropsychiatric conditions like depression and schizophrenia,” Fiete says.

The research was funded by the Office of Naval Research, the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, the National Science Foundation Directorate for Computer and Information Science and Engineering, the Simons Center for the Social Brain, the Simons Collaboration on the Global Brain, the JPB Foundation, the McGovern Institute, and the Picower Institute.

Study reveals how an anesthesia drug induces unconsciousness (2024)

FAQs

Study reveals how an anesthesia drug induces unconsciousness? ›

Using a novel technique for analyzing neuron activity, the researchers discovered that the drug propofol

propofol
Propofol is the active component of an intravenous anesthetic formulation used for induction and maintenance of general anesthesia. It is chemically termed 2,6-diisopropylphenol. The formulation was approved under the brand name Diprivan. Numerous generic versions have since been released.
https://en.wikipedia.org › wiki › Propofol
induces unconsciousness by disrupting the brain's normal balance between stability and excitability. The drug causes brain activity to become increasingly unstable, until the brain loses consciousness.

How does anesthesia cause unconsciousness? ›

When electrolytes move from higher to lower concentrations, the membrane potential changes, and the cell sends a signal to neighboring cells. This phenomenon is repeated to transmit information within the neural circuit – a process that corresponds to brain activity when we are awake. Anesthetics stop this activity.

What provides drugs that cause unconsciousness prior to surgery? ›

Intravenous Sedatives

Benzodiazepines are often used as a premedication for general anesthesia or anxiolysis in patients undergoing regional anesthesia. Midazolam (Versed) is the most commonly used preoperative sedative and can provide anxiolysis, sedation, and amnesia.

What happens to the brain under anesthesia? ›

Anesthetic drugs cause brain circuits to change their oscillation patterns in particular ways, thereby preventing neurons in different brain regions from communicating with each other. The result is a loss of consciousness—an unnatural state that he compares to a “reversible coma”—that differs from sleep.

What drugs are used in anesthesia? ›

Propofol, etomidate, and ketamine are the intravenous (IV) sedative-hypnotic agents commonly used to induce general anesthesia (table 1), while adjuvant agents (eg, opioids, lidocaine, midazolam, and volatile anesthetics) are often used to supplement the effects of the primary sedative-hypnotic induction agent (table 2 ...

How does anaesthesia block consciousness? ›

Anesthesia blocks sensation by cutting off communication within the cortex. Under propofol general anesthesia, sensory input still reaches the brain, but signals do not spread. Results suggest consciousness requires cortical regions to all be “on the same page.”

Which type of anesthesia causes unconsciousness? ›

General anesthesia: This treatment makes you unconscious and insensitive to pain or other stimuli. Providers use general anesthesia for more invasive procedures or surgeries of your head, chest or abdomen.

What is drug induced unconsciousness? ›

An induced coma – also known as a medically induced coma (MIC), barbiturate-induced coma, or drug-induced coma – is a temporary coma (a deep state of unconsciousness) brought on by a controlled dose of an anesthetic drug, often a barbiturate such as pentobarbital or thiopental.

How many times is it safe to go under anesthesia? ›

In general, anesthesia is considered safe, and most people can undergo multiple procedures with anesthesia without any long-term adverse effects. However, each time you undergo anesthesia, there is a small risk of side effects or complications such as nausea, vomiting, sore throat, headache, or confusion.

Why do people cry after anesthesia? ›

Some patients may cry after awakening from general anesthesia due to feeling confused and disoriented when the effects of the drugs wears off.

Why did I pee while under anesthesia? ›

A patient who's been anesthetized with general anesthesia isn't able to control their urination. Because of this, the surgical team will usually place a Foley catheter before performing the procedure. This ensures that the bladder stays empty and the operation is clean and sterile.

What happens if you don't wake up from anesthesia? ›

The most common injuries caused by anesthesia errors include: Asphyxia or lack of adequate oxygen supply. Cardiovascular injury, which may include heart attack or stroke. Brain damage including traumatic brain injury or TBI.

Is being put under anesthesia safe? ›

General anesthesia is very safe. Most people don't have serious problems from general anesthesia. This is true even for people with significant health conditions. Your risk of complications is more closely related to the type of procedure you're undergoing and your general physical health.

What is the strongest anesthetic? ›

General anesthesia – This is the most powerful form of anesthesia and puts patients to sleep during surgery. It is typically administered through a breathing mask or IV and used for complex, time-consuming surgeries such as a hip replacement.

What drug do they give you before anesthesia? ›

Midazolam injection is used to produce sleepiness or drowsiness and relieve anxiety before surgery or certain procedures. When midazolam is used before surgery, the patient will not remember some of the details about the procedure.

What causes loss of consciousness after surgery? ›

Failure of the patient to awaken promptly after general anesthesia has been attributed by Denlinger to three principal causes: (1) prolonged drug action, (2) metabolic encephalopathy, and (3) cerebral injury (Table 54-2).

Where does your consciousness go under anesthesia? ›

Contrary to common belief, consciousness does not simply disappear during general anaesthesia. The brain of anaesthetised patients goes through a series of different states with variable mental content and perception of the environment.

Which anesthetic causes a complete loss of consciousness? ›

General anesthesia.

General anesthesia causes you to lose consciousness. This type of anesthesia, while very safe, is the type most likely to cause side effects.

How does anesthesia knock you out? ›

As long as the patient receives the anesthesia, the brain stays in this state. The brain waves become so structured and regimented that they can't transmit information anymore. As a consequence, brain regions can no longer communicate with each other, resulting in profound unconsciousness and amnesia.

Top Articles
Latest Posts
Article information

Author: Carlyn Walter

Last Updated:

Views: 5574

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.